
Computers and Electronics in Agriculture 190 (2021) 106406

Available online 15 September 2021
0168-1699/© 2021 Elsevier B.V. All rights reserved.

Review 

Data-driven decision support in livestock farming for improved animal 
health, welfare and greenhouse gas emissions: Overview and challenges 

Parisa Niloofar a,*, Deena P. Francis b, Sanja Lazarova-Molnar a, Alexandru Vulpe c, 
Marius-Constantin Vochin c, George Suciu d, Mihaela Balanescu d, Vasileios Anestis e, 
Thomas Bartzanas e 

a Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark 
b DTU Compute, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark 
c Telecommunications Department, University Politehnica of Bucharest, Iuliu Maniu Blvd., 1-3, Bucharest 061071, Romania 
d R&D Department, Beia Consult International, Peroni, 16, Bucharest 041386, Romania 
e Department of Natural Resources and Agricultural Engineering, Division of Farm Structures and Farm Machinery, Laboratory of Farm Structures, Agricultural University 
of Athens, Iera Odos 75, GR-11855 Athens, Greece   

A R T I C L E  I N F O   

Keywords: 
Data-driven decision support 
Data analytics 
GHG emission 
Modelling and simulation 
Precision livestock farming 

A B S T R A C T   

Precision Livestock Farming (PLF) is a concept that allows real-time monitoring of animals, by equipping them 
with sensors that surge livestock-related data to be further utilized by farmers. PLF comes with many benefits and 
ensures maximum use of farm resources, thus, enabling control of health status of animals, while potentially 
mitigating Greenhouse Gas (GHG) emissions. Due to the complexity of the decision making processes in the 
livestock industries, data-driven decision support systems based on not only real-time data but also expert 
knowledge, help farmers to take actions in support of animal health and better product yield. These decision 
support systems are typically based on machine learning, statistical analysis, and modeling and simulation tools. 
Combining expert knowledge with data obtained from sensors minimizes the risk of making poor decisions and 
helps to assess the impact of different strategies before applying them in reality. In this paper, we highlight the 
role of data-driven decision support tools in PLF, and provide an extensive overview and categorization of the 
different data-driven approaches with respect to the relevant livestock farming goals. We, furthermore, discuss 
the challenges associated with reduction of GHG emissions using PLF.   

1. Introduction 

As population and incomes increase, there will also be a growth in 
the demand for greater food variety. Studies on human nutrition have 
shown that a nutrition transition is taking place worldwide, in which 
people shift towards more affluent food consumption patterns (Bruin
sma, 2003; Hadjikakou and Wiedmann, 2017; Popkin, 2002; Wiedmann 
et al., 2020). Depending on factors like geographical location and health 
policies, this change of demand patterns from food of plant origin to 
livestock products, such as meat, eggs and milk, together with the 
sizeable population growth, needs to be addressed in a sustainable 
manner without causing irreparable environmental damage or 
exceeding global resources. 

Sustainability in livestock production processes is the vision of the 
Precision Livestock Farming (PLF) approach (Banhazi et al., 2012; 

Wathes et al., 2008). PLF is one of the most powerful developments 
amongst livestock farming industry, offering real-time monitoring and 
management tools for farmers. PLF includes a wide span of technologies 
which are being applied along with advanced technologies like micro
fluidics, sound analyzers, image-detection techniques, sweat and sali
vary sensing, serodiagnosis, and others (Neethirajan, 2017). However, 
the growing amount and complexity of data generated by fully auto
mated, high-throughput data recording or phenotyping platforms, and 
information obtained from real-time noninvasive computer vision, pose 
challenges to the successful implementation of PLF (Morota et al., 2018). 
Modelling of complex dynamic processes in livestock production is one 
of the critical components of the PLF approach (Wathes et al., 2008). 
Advanced statistical and mathematical modelling techniques, machine 
learning (ML) and data mining have great potential for describing these 
complex processes. Hence, they are being widely applied in novel 
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algorithms for predictive analytics in animal health and welfare. 
(Berckmans, 2006; Vázquez-Diosdado et al., 2019) 

Modelling and Simulation (M&S) approaches, also help decision 
makers and farmers in their decisional problems by providing insights 
into their managerial practices. M&S formalize the real world into a 
computer-understandable environment and then imitate the processes 
and the operations of the real world. Traditionally, simulation modeling 
uses expert knowledge to develop the dynamic models, which are af
terwards applied in the simulation process to provide understanding of 
the systems of interest. Most recent M&S approaches utilize observa
tional datasets or real-time data to extract models and parameters 
needed to perform simulation. 

The goal of this paper is to provide an overview of the existing data- 
driven approaches in PLF and categorize them according to the different 
goals they aim for. We split all data-driven approaches in two categories: 
1) machine learning and data analytics algorithms; and 2) modeling and 
simulation based approaches. Each of these approaches can be combined 
with optimization techniques to enhance the decision support func
tionality. We consider two major goals in applications of decision sup
port tools in livestock farming as we found them most prominent 
throughout literature: 1) improving animal health, welfare and pro
duction; and 2) reducing GHG emissions. Ultimately, we aim to address 
the problem of finding a suitable approach, given a goal and the 
amount/type of data that is available. 

The paper is structured as follows: Section 2 provides a background 
on Precision Livestock Farming as enabler for sophisticated decision 
support approaches. In Section 3, we review machine learning and data 
analytics approaches in livestock farming. Existing M&S methodologies 
are reviewed in Section 4. In Section 5, we discuss about the optimiza
tion approaches in PLF, and Discussion in Section 6 is dedicated to the 
challenges related to the data pathway and key takeaways. Finally, in 
Section 7, we conclude the paper. 

2. Decision support in livestock farming 

Increased demand for animal products, reductions in the number of 
farms together with an increase in the average herd size have been 
already reported in most of the main dairy regions across the world 
(Gargiulo et al., 2018). This strongly reduces the available time and 
attention span for livestock farmers to monitor all of their animals in a 
reliable way. Managing large numbers of livestock, ensuring that pro
duction demands are met and environmental concerns are not dis
counted, are factors that have caused a shift from traditional to 
information and communication technology-driven (ICT-driven) 
farming (Giovannucci et al., 2012; Norton et al., 2019). It is, therefore, 
important to briefly describe the two associated concepts: Precision 
Livestock Farming and existing approaches for decision support in PLF 
systems. 

2.1. Precision livestock farming 

One of the definitions of PLF, provided in Tullo et al. (2019), de
scribes PLF as “the application of process engineering principles and 
techniques to livestock farming to automatically monitor, model and 
manage animal production”. Berckmans (2017) defines PLF as a way to 
manage individual animals through continuous real-time monitoring of 
health, welfare, production/reproduction, and environmental impact. 
Wathes (2010) describes PLF as an integrated systems approach that 
includes automatic monitoring, modelling and management that will 
direct the processes along specific paths in order to meet the required 
goals. As such, PLF encompasses various aspects of continuous livestock 
monitoring, such as data collection and analysis, as well as reporting of 
relevant events. 

Conditions of animals (physical and mental) are continuously 
changing due to external stimuli. These changes can be continuously 
recorded, stored and transmitted using sensors that measure bio-signals. 

Typical sensors used in PLF include accelerometers, gyroscopes, tem
perature sensors and biosensors (Berckmans, 2006; Karthick et al., 2020; 
Knight, 2020; Muhammad Sayem et al., 2020; Wathes et al., 2008). The 
type of data collected by these sensors include animal gait, speed, po
sition, temperature, sounds, heart rate etc. In addition to the sensor data, 
modelling, simulation and decision support using machine learning 
models are also being successfully used in PLF. Furthermore, innovative 
video monitoring and facial expression recognition can be adapted from 
humans to animals, such as NOLDUS Ethovision (van Eerdenburg et al., 
2017), which is used to track and analyze the behavior, movement, and 
activity of animals (Subea and Suciu, 2019). 

In summary, PLF consists of the following components:  

• Continuous or real-time collection of sensor data: Real-time data, 
such as temperature, movement, breath emissions of animals are 
collected using sensors. Collected data can be internal (within the 
farm) or external (from outside the farm). The use of accurate and 
low-cost sensor technology is desired (Norton et al., 2019), i.e. long 
battery life, ease of use, reduced in numbers, lower environmental 
impact and being noninvasive for animals.  

• Integration and storage of data: Collected data is integrated, 
stored, and, subsequently, used in the following steps. Integration is 
crucial because data is derived from heterogeneous sources with 
different formats and modalities.  

• Data analysis, machine learning, simulation and modelling: 
Obtained data is used for further analysis that aims at providing in
sights into the current situation of the farm. Simulation of a livestock 
farm in a lab is the first step towards building a real-world model for 
the problem. However, simulation alone does not suffice since real 
livestock farms are much too complex to simulate (Norton and 
Berckmans, 2017), and other data analytics approaches like machine 
learning can fill the gaps. Decision Support (DS) and M&S are two 
key terms that incorporate data and farm specific information to help 
Decision Makers (DMs) to make key decisions regarding their 
farming practices.  

• Event detection and signaling: Occurrences of relevant events are 
detected and made known to stakeholders. Various statistical and 
machine learning approaches are usually adopted for event detection 
(Adrion et al., 2018; Chung et al., 2013). 

These PLF components help farmers in their decision-making process 
by enhancing both the management of their daily tasks and the super
vision of their herd. Overall, the benefits reaped by adopting PLF in the 
livestock industry have been tremendous (Hostiou et al., 2017). If 
properly implemented, PLF could (1) improve or, at least, objectively 
document animal welfare on farms; (2) reduce GHG emissions and 
improve environmental performance of farms; (3) facilitate product 
segmentation and improve marketing of livestock products; (4) reduce 
illegal trading of livestock products; and (5) improve economic stability 
of rural areas (Banhazi et al., 2012). Hence, the implicit benefits mainly 
include increase in productivity, real-time supply chain management 
and better marketing, as well as improved working and economic con
ditions of farmers in rural areas. Some authors have also proposed that 
via PLF technologies, reduction of environmental impact of livestock 
farming could be achieved, although there is no PLF application 
designed specifically to meet this goal up to now (Tullo et al., 2019). The 
most prominent PLF technology for reducing emissions of GHG and 
ammonia seems to be the precision feeding (Gerber et al., 2013). Pre
cision livestock feeding aims to match nutrient supply precisely with the 
nutrient requirements of individual animals, based on real-time feed
back from sensor (Zuidhof, 2020). 

It is worth noting that although PLF has a positive impact on in
dustrial farming and can be attractive for young people, PLF can also 
lead to negative impacts on farmers and animals if the tools are not 
adapted to farmers’ needs and skills. It is, therefore, critical to consider 
the different dimensions of farmers’ work to facilitate their adoption of 
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these new technologies (Hostiou et al., 2017). From farmers’ point of 
view, PLF technologies affect the nature and frequency of their daily 
tasks, specifically in relation to animals. And some farmers fear that with 
PLF they will lose their observation skills and get dependent on the tools 
(Kling-Eveillard et al., 2020). Furthermore, many farmers perceive that 
adopting high productive management systems involves increased 
financial risk (Bartzanas et al., 2017). 

Shaping a sustainable future will depend on understanding the di
versity and complexity of livestock systems and the particular motiva
tions and challenges that stakeholders face in periods of transformative 
change (FAO, 2019). What works for a farmer in a capital-intensive 
system can be very different from what works for a pastoralist or a 
mixed crop-livestock smallholder (FAO, 2019). For all livestock pro
duction systems, opportunities to improve the efficiency of production 
and decrease emissions per unit of animal product exist and are being 
developed. Some of these options require novel technological in
terventions, whereas others are ‘simple’ principles that can be applied 
already in most production systems (Bartzanas et al., 2017). However, 
becoming equipped with sensors and, therefore, technologically ready, 
not only depends on the farm size but also shows interest in using 
automation to increase productivity and efficiency (Allain et al., 2016; 
Gargiulo et al., 2018). Adoption of PLF technologies by livestock farmers 
is currently at a very early stage, and although there are several PLF 
technologies available, very few of them are used in practice. In order to 
increase the adoption of these technologies, their advantages need to be 
disseminated to livestock farmers by stakeholders which have proven 
themselves trustworthy (e.g. practitioners and consultants), and issues, 
such as business relationships between sensors owners and farmers, as 
well as sensor data ownership, need to be clarified and resolved 
(Benjamin and Yik, 2019). Moreover, further investigation of whether 
PLF technologies can be successfully implemented (from a technical 
point of view) in commercial environments would be a prerequisite for 
their wider adoption (Norton et al., 2019). 

Examples of PLF projects that helped to increase the adoption of PLF 
technologies and to raise awareness among farmers include: Bright
Animal (Lehr, 2011) and EU-PLF (2016). BrightAnimal had the 
following mission: “To produce a framework for European and non- 
European small and medium enterprises on effective and acceptable 
PLF and to create an international, interdisciplinary network for further 
development and dissemination”. EU-PLF’s main objective was to 
deliver a PLF-Blueprint for farmers on how to install and use PLF tech
nologies in their farms. 

2.2. Decision support approaches 

The need for decision support in livestock farming is vital due to its 
inherent challenges, like systems’ complexity and the need of fulfilling 
multiple goals. There are a number of decision makers, e.g., livestock 
farmers (owners) and farmers’ consultants, who can benefit from the use 
of decision support in making crucial decisions regarding the manage
ment of livestock. Benefits of decision support systems (DSS) can be 
quantified by the attainment of two ultimate goals, along with the 
economic aspects: (a) improving animal health and welfare and (b) GHG 
emissions reduction. It is worth mentioning that GHG emissions miti
gation might not be a goal straight away for the farmer. However, some 
of the practical actions towards low-carbon livestock are in developing 
policy measures to drive change and to boost efficiency of livestock 
production and resource use (FAO, 2019). These policy measures often 
incentivize farmers that take measures towards GHG emissions reduc
tion (Baker, 2021). Furthermore, “Pull incentives” can help to generate 
market demand and raise consumer awareness in support of shifts to
wards best climate change practices (FAO, 2019). Improving animal 
health and welfare is closely related to the livestock production (meat, 
milk, eggs, etc.) because for a fixed farm size, products from healthy and 
well-treated animals are superior, both in terms of quality and quantity 
(Gonzalez-Rivas et al., 2020; Wang et al., 2017). Aside from the fact that 

animals health and welfare affect farmers’ incomes, optimizing animal 
welfare also reduces the emissions intensity of producing livestock 
products (i.e. emissions per unit of product) (Herrero, 2016). Possible 
interventions to reduce emissions are, therefore, to a large extent based 
on technologies and practices that improve production efficiency at 
animal and herd levels. For ruminants, cows mainly, using better feeds 
and feeding techniques, can reduce CH4 generated during digestion as 
well as the amount of CH4 and N2O released by decomposing manure. In 
general, improved breeding and animal health interventions to allow 
herd sizes to shrink (meaning fewer, more productive animals) will also 
help (FAO, 2020). This means that it is necessary to ensure that the costs 
of reducing emissions are balanced with the benefits of livestock welfare 
and production. 

Animal health and welfare: Detection and prevention of animal 
health issues, and compliance with medical regulations are some of the 
factors that are considered for improved production or yield. Research in 
animal welfare using sensor data generally falls in the categories of 
modelling-based, simulation-based and optimization-based methods. In 
the modelling-based methods, risk assessment modelling, ML and/or 
statistics based methods are commonly found. ML algorithms have been 
widely facilitated within modeling and simulation modules as data an
alytics steps, mostly to analyze data collected from sensors attached to 
livestock. The need for ML algorithms for decision support has risen due 
to the significant increase in the amount of data being collected through 
livestock farms. Such large amounts of data are ideal for automatically 
learning useful patterns and performing predictions using ML. 

GHG emissions: Improving production is often done in combination 
with other factors, such as reducing energy consumption, profit maxi
mization and reducing GHG emissions. Compliance with environmental 
regulations and optimized energy usage are some of the factors in 
reducing GHG emissions. The Intergovernmental Panel on Climate 
Change (IPCC) proposed “tiers” for classifying various approaches for 
coping with climate change due to GHG emissions (Eggleston et al., 
2006). A tier represents a level of methodological complexity and three 
tiers are provided. Tier 1 is the basic method, Tier 2 intermediate and 
Tier 3 the most demanding in terms of complexity and data re
quirements. For instance, the enteric fermentation emission factor for a 
300 kg buffalo, using relevant tables for Tier 1, equals 55 kg CH4 
head− 1year− 1. But according to Tier 2, the same emission factor equals: 

EmissionFactor =
GE

(
Ym
100

)

365

55.65  

where GE is gross energy intake in MJ head− 1 day− 1, and Ym is the 
methane conversion factor. To obtain these values we need even more 
information about the animal’s feeding quality, milk production etc. 
Tiers 2 and 3 are sometimes referred to as higher tier methods and 
generally, to develop, evaluate and apply a higher tier method is 
considered to be more accurate if adequate data is available (Kaneko and 
Kawanishi, 2016). Depending on the amount of available data, a deci
sion maker can decide about which Tier to apply. 

Table 1 lists some of the decision support models which are based on 
Tier 1 and Tier 2 methodologies for estimating GHG emissions from 
livestock. Majority of these models are based on cattle (beef and/or 

Table 1 
Decision support models for GHG emission estimation.  

Model Farm Type Work 

AgRE Calc Cattle (Scotland’s Rural College, 2014) 
COMET-Farm Cattle (Paustian et al., 2017) 
Cool Farm Tool Cattle (Hillier, 2012) 
Carbon Navigator Cattle (Murphy et al., 2013) 
ValorE Cattle, Pigs (Acutis et al., 2014) 
IPCC inventory software Not limited (SPIRIT Inc., 2020) 
ALU software Not limited (Colorado State University, 2010)  
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dairy) farms, while some of them also consider pig farms. The subtleties 
and fine-grained details of a typical farm are generally not incorporated 
within Tier 1 and 2 methodologies. 

In summary, there are a number of studies focused on decision 
support for increasing production yield, improving animal welfare and 
reducing GHG emissions of livestock farms. Incorporating ML and deep 
learning algorithms in the PLF approach can assist in improving of the 
decisions made by the DMs. Some of the areas that need more research 
are described below.  

• Reusable DS models: Most of the works in decision support for PLF 
perform (run) well for the individual farms under study, but there is 
no evidence of the utility of these methods in other comparable 
farms. There is a need for developing generalizable machine learning 
strategies for performing various tasks in similar kind of farms.  

• Integration and storage of multi-farm data: There is a need for 
integrating data from different sources and from various farms. This 
helps in building a knowledge base that is instrumental in achieving 
the goal of the previous point. An example of such a system is the 
work by Schuetz et al. (2018) in which a data warehouse and se
mantic technologies were used to provide effective management of 
multi-farm data.  

• Balancing GHG emissions, animal welfare and production yield: 
Models incorporating these multiple criteria need to be developed. 
Most of the models developed so far only consider one of these as
pects. It would be a challenging yet interesting study that can 
potentially improve DS in PLF. 

3. Machine learning and data analytics for decision support in 
livestock farming 

The field of AI involves development of theory and computer systems 
capable of performing tasks that normally require human intelligence, 
such as sensory perception and decision making. Kaplan and Haenlein 
(2019) defined AI as “the ability of a system to correctly interpret 

external data, to learn from it, and to use that learning to achieve spe
cific goals and tasks through flexible adaptation”. Thus, AI acts on 
external information from Internet of Things (IoT) and other large data 
sources, uses knowledge-based rules (provided by developers) or iden
tifies the rules and patterns that underlie the use of machine learning to 
drive systems to set goals (Fig. 1). 

IoT is a technological paradigm seen as a vast network of digitally 
connected devices and machines (Ashton, 2018). Here, the digital 
connection of machines or “things” takes place on the “internet”. The 
influence of IoT comes from its ability to allow communication between 
the physical and digital worlds, a concept often called the fourth in
dustrial revolution (Morrar et al., 2017). IoT platforms serve as a bridge 
between device sensors and data networks, where connected IoT devices 
exchange information using Internet transfer protocols. The sensors or 
devices in an IoT network produce large volumes of data that are 
continuously transmitted to a “data lake”, which could be a local 
physical server or a cloud-based storage space (i.e. distributed over 
internet) to enable the necessary data processing through appropriate 
ML algorithms or techniques to generate actionable knowledge. Thus, 
we note that IoT is essentially the means to generate and transmit large 
volumes of data with embedded practical information. 

It should be noted that the complexity of agri-food systems is very 
high due to the involvement of many unpredictable variables in agri
culture, the heterogeneity of food materials and the eating habits of 
consumers. This makes it almost impossible to translate the knowledge 
of farmers, industry experts and consumers into clearly expressed, well- 
defined rules (software) that can be implemented in Artificial Intelli
gence (AI) -based expertise systems (Goyache et al., 2001). 

ML based AI is suitable for systems where frequent system training is 
not a constraint and greater accuracy is desired, which is true for agri- 
food systems. ML is one of the central topics of AI, because a charac
teristic usually attached to intelligence is the ability to learn from the 
environment. ML is an AI development technique that offers the possi
bility of a computer system to learn without being explicitly pro
grammed (Mitchell et al., 2013). ML is also known as statistical learning, 

Fig. 1. General AI-based PLF system data workflow.  
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a subfield of AI dedicated to the study of algorithms for prediction and 
inference. Learning from data is at the core of ML, and data mining 
shares a similar spirit with ML and is often discussed in the same context 
(Morota et al., 2018). 

3.1. Overview of existing machine learning approaches in livestock 
farming 

In most practical cases, the ultimate aim of machine learning is to 
predict the animals response(s) to its process input(s). For instance, 
predicting the growth trajectory of broiler chickens or cattle, using the 
food supply or the past evolution of the flock or herd, as a control input 
(Aerts et al., 2003; Alonso et al., 2015). However, not every mathe
matical model can be used for complex dynamic processes such as 
livestock production, which often require an adaptive approach: farm 
animals constitute complex, individual, time-varying dynamic systems 
(Berckmans, 2006). 

The complexity of the modelling approach chosen by a decision 
maker depends on the PLF target and the amount of available data to 
achieve this target. Considering animal welfare, algorithms are mostly 
very complex with too many restrictions to control the process input(s). 
To better explain a case where there is a need to control the inputs to a 
process, suppose we are interested in assessing the effects of environ
mental factors such as temperature on the average daily gain, feed 
intake, heat production or physiological status of swine (Bridges et al., 
1995). Different levels of changes in the environmental condition as a 
controller (input parameter) can be assessed on i.e. the average daily 
gain as the response variable. The simpler empirical models applied for 
control purposes, are static and they cannot cope with the dynamic 
nature of the process response (Wathes et al., 2008). As for GHG emis
sions, there are fewer studies in PLF context (Hosseinzadeh-Bandbafha 
et al., 2016; Pérez-Miñana et al., 2012; Zheng et al., 2016). The reason 
for this is the fact that GHG emissions are mostly estimated under IPCC 
approaches. The lack of recorded or historical data on GHG emissions, 
that is discussed more in Section 6, is also another factor influencing the 
lack of ML-based research in coping with GHG emission mitigation. 
There is a lack of methods to accurately calculate GHG emissions on 

livestock farms to support a ML based approach, but there are several 
studies to empirically measure some of the factors that contribute to the 
total GHG emissions such as CH4, CO2, N2O levels in farms. Such data 
and analysis are in our opinion a starting point for accurately estimating 
the amount of GHG emissions in livestock farms, which is a very 
important factor related to the sustainability of such farms. As more 
relevant data becomes available, the ML models can become more 
effective. Morota et al. (2018) outline a framework for machine learning 
and data mining and offer a glimpse into how they can be applied to 
solve pressing problems in animal sciences. 

In the simplest case, where less data is needed, a PLF process may 
only have one system input and one system output (SISO). However, in 
most practical applications, PLF systems have several process inputs and 
outputs that interact, resulting in complex multiple-input, multiple- 
output systems where the component processes may act in series, in 
parallel or with feedback (Wathes et al., 2008). Many black box models 
reproduce highly complex nonlinear phenomena, including those for 
which theories have not been proposed yet, and they are defined as 
models where no understanding of the model structure and its param
eters is required. However, black box models are not well accepted in 
PLF applications because they lack explainability which is crucial for 
building trust (Table 2). Grey box models combine a partial theoretical 
structure with data to complete the model (Bohlin, 2006). Hence, they 
can remedy the lack of explainability in black box models, since the 
parameters in grey box models can be interpreted on the basis of the 
underlying biological or physical processes (Kristensen et al., 2006). 
Wathes et al. (2008) discuss that the challenge is to develop tools to 
determine the biological meaning of a model’s structure, order and 
parameters. 

Table 2 outlines some of the tasks considering PLF goals: Welfare and 
GHG emission, that have been done successfully using ML algorithms. 

The majority of the previous works have delved into animal welfare 
studies including activity recognition, behavioral pattern assessments, 
and disease detection. There were also a few studies into estimating 
emissions arising from livestock farms. In the following, we discuss the 
different efforts, based on the type of study, as well as the ML approaches 
that were used. 

Table 2 
ML based data-driven decision support considering PLF goals: Welfare and GHG emission.*  

Goal Task Work Method used Data source 

Welfare Activity identification (Godsk and Kjærgaard, 2011) END GPS 
(Vázquez-Diosdado et al., 2019) Offline k-NN, online k-means Accelerometer, Gyroscope sensors 

Anomaly detection (Adrion et al., 2018) z-score thresholding RFID 
Estimation of cattle weight trajectories (Alonso et al., 2015) SVM Bovine weights 
Predicting growth trajectory of broiler chickens in 
real time 

(Aerts et al., 2003) Recursive linear modelling broiler chickens 

Rumen fermentation pattern detection (Craninx et al., 2008) ANN Milk samples 
Pig wasting diseases detection (Chung et al., 2013) SVDD, SRC Cough sounds 
Study relation between feed intakes and vocal 
recordings 

(Aydin et al., 2015) Threshold based Livestock audio recordings 

Cattle behavioral classification (Dutta et al., 2015) Bagging ensemble with tree 
learner 

3-axis accelerometer and 
magnetometer 

Identification and classification of chewing patterns 
in calves 

(Pegorini et al., 2015) Decision Tree C4.5 Optical fiber Bragg grating sensors 

Early detection of problems in egg production curves (Morales et al., 2016) SVM Egg production database 
Animal tracking and behavior annotation (Matthews et al., 2017) GMM Video camera data 
Face recognition (Hansen et al., 2018) CNN Webcam images 
Livestock vocalization detection (Bishop et al., 2019) SVM Livestock audio recordings 
Grazing and ruminating behavior, lameness 
detection in sheep 

(Kaler et al., 2020) RF, NN, SVM, KNN Triaxial gyroscope and 
accelerometer 

GHG 
emissions 

Estimating GHG emissions (Pérez-Miñana et al., 2012) BN Dairy farm data 
Modelling GHG emissions (Hosseinzadeh-Bandbafha et al., 

2016) 
ANFIS Dairy farm data questionnaire 

Modelling methane emissions (Zheng et al., 2016) BN Dairy farm data  

* Abbreviations: END (Ensembles of Nested Dichotomies) (Frank and Kramer, 2004), k-NN: k-nearest neighbors, SVM: Support Vector Machines, SVDD: Support 
Vector Data Description, NN: Neural Networks, ANN: Artificial Neural Network, SRC: Sparse Representation Classifier, SVR: Support vector regression, GMM: Gaussian 
Mixture Models, CNN: Convolutional Neural Network, ANFIS: Adaptive Neural Fuzzy Inference System, BN: Bayesian Network, RF: random forest, KNN: AdaBoost and 
k-nearest neighbor. 
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Type of study: Research works on welfare of animals can be cate
gorized into the following two categories: first, animal behavior moni
toring and second animal product monitoring. The first category delves 
into various aspects of animal behavior such as their movements, 
chewing and vocal patterns, while the second category consists of 
methods that monitor the quantity and quality of animal products. We 
first detail both categories of animal welfare and then we discuss the 
research on GHG emission as follows:  

(1) Considering animal welfare:  
• In animal behavior monitoring, Aydin et al. (2015) performed a 

study of the relation between feed intake and vocal (pecking 
sounds) recordings of broiler chickens. Their results indicate that 
there is a strong correlation between the two variables, indicating 
the applicability of sound analysis for monitoring feeding be
haviors of chickens. Chung et al. (2013) used pig coughing sounds 
to detect respiratory diseases. Bishop et al. (2019) used live audio 
recordings of three different kinds of animals, namely, sheep, pigs 
and cattle for vocalization classification. While using audio re
cordings, preprocessing of the data is often done in order to 
obtain the actual audio signal prior to applying ML.  

• In animal product monitoring, Alonso et al. (2015) have used 
various bovine measurements and characteristics such as length, 
age, sex, while Morales et al. (2016) used egg production data 
and Craninx et al. (2008) used milk samples. Kaler et al. (2020) 
showed for the first time that features extracted from triaxial 
accelerometer and gyroscope sensors signals can detect grazing 
and ruminating behavior, and also differentiate between lame 
and non-lame sheep while standing, walking and lying.  

(2) Existing research on GHG emissions in livestock farms deals with 
the whole livestock farm data in contrast to data taken from an
imals alone. Whole farm studies have been more frequently used 
for GHG emission estimation because there are also other sources 
of emissions at the farm level apart from animals, such as storage 
of manure, feeding situation, crop and pasture land (Rotz, 2018). 
Whole farm models are not aligned with the PLF approach, as 
important components of the PLF approach (such continuous and 
real-time measurements with low-cost sensor equipment) are not 
a prerequisite for their development or use. Recent studies have 
employed ML algorithms for estimating GHG emissions from 
farm data. Pérez-Miñana et al. (2012) included dairy farms, crop 
farms, mixed (dairy and crop) farms and low grazing farms in 
their GHG modelling. Profiles of such farms, which include at
tributes, such as size of farms (in hectares), herd size, fertilizers 
applied, solid wastes, electricity used, gas used etc., are given as 
input to their model. Hosseinzadeh-Bandbafha et al. (2016) 
collected data using a face to face questionnaire, while others 
used animal, diet and production data from dairy farms (Zhang 
et al., 2016; Zheng et al., 2016). 

Type of approach: The Ensembles of Nested Dichotomies (END) al
gorithm was used by Godsk and Kjærgaard (2011) to identify four ac
tivities, namely, eating/seeking, walking, lying and standing of 14 cows. 
They performed a comparison of their approach with other methods 
such as Support Vector Machines (SVMs), decision trees and Random 
Forest and found that END algorithm obtained the best accuracy of 
86.2%. This value is the average accuracy of the classifier over all the 
activities: lying, standing, walking, eating seeking while using 10 en
sembles of the classifier. The individual activities accuracies were as 
follows: lying 76.5%, standing 75.8%, walking 100% and eating seeking 
90%. The input parameters relating to the features were varied and it 
was found that the classifier performance was not affected to any large 
extend by such changes. In a different approach by Vázquez-Diosdado 
et al. (2019), clustering by k-means algorithm and classification using k- 
Nearest Neighbor (k-NN) were applied for three types of activities of 17 
sheep, namely, walking, standing and laying. The combination of online 

k-means and offline k-NN algorithm achieved an average accuracy of 
85.2% over all activities. The use of online k-means is justified by its 
effectiveness in dealing with the effects of concept-drift (distribution 
changes) in the data. Audio based disease detection was done by Chung 
et al. (2013) using audio preprocessing followed by ML techniques. 
Detection of disease in pigs was cast as an anomaly detection task, and 
by using Support Vector Data Description (SVDD) average accuracy of 
94% was obtained. Furthermore, three main types of diseases, namely, 
Postweaning Multisystemic Wasting Syndrome (PMWS), Porcine 
Reproductive and Respiratory Syndrome (PRRS) virus and Mycoplasma 
Hyopneumoniae (MH) were identified with average accuracy of 91% 
using Sparse Representation Classifier (SRC). Simple thresholding based 
classification were done by Aydin et al. (2015) and Adrion et al. (2018) 
for the tasks of feed intake-vocal measurement and anomaly detection 
respectively. When prediction of some event or phenomena such as 
animal activity is the goal, then SVM has been demonstrated to be 
successful in various kinds of farms and tasks. If the data recorded are 
videos, then Convolutional Neural Networks (CNNs) tend to be more 
successful than traditional ML algorithms. Other approaches such as 
Artificial Neural Networks (ANN) and Gaussian Mixture Models (GMMs) 
have been used for rumen fermentation pattern detection and animal 
tracking by Craninx et al. (2008) and Matthews et al. (2017), respec
tively. Regression tasks, such as animal weight prediction, have been 
done successfully with SVM (Alonso et al., 2015). For the task of 
modelling GHG emissions, Bayesian Networks (BNs) have been found to 
be useful in modelling causal relationships between the factors affecting 
methane emissions (Pérez-Miñana et al., 2012; Zheng et al., 2016). In 
the work of Zheng et al. (2016), a comparison was made between BNs, 
SVMs, Decision Trees (J48) and instance-based classifiers (KStar) on the 
task of predicting GHG emissions. The results revealed that BN achieved 
the best accuracy. 

3.2. Risks and challenges 

Due to the nature of tasks in PLF, there are various associated risks 
and challenges. We categorize the current problems in ML for PLF into 
two main categories: (1) Model related and (2) Data related.  

(1) Model related: Selecting the appropriate ML model for a given 
task is a key step that determines how well we make sense of the 
data. Among the common issues encountered in applying ML to 
life sciences, besides model selection is the issue of interpretability. 
Depending on the type of model, clarity on the behavior of the 
model varies. In PLF, one would be interested to know why a 
certain model gives a certain prediction. As observed from 
Table 2, most of the studies include interpretable ML models as 
opposed to black box models. On the other hand, the upside of 
black box models, such as deep learning methods, is that they 
have been shown to be extremely successful in various difficult 
tasks such as speech recognition (Dahl et al., 2011), image 
captioning (Johnson et al., 2016), machine translation (Sutskever 
et al., 2014), protein structure prediction (Senior et al., 2020) etc. 
This fact indicates that in areas such as livestock management, 
which is considered a complex scenario involving humans, ani
mals and environment, deep learning models could be used to 
provide deep undiscovered insights.  

(2) Data related: the data collected from livestock farms are of varied 
types (modality) and often contain missing and/or noisy values. 
The success of applying ML on data depends to a high degree on 
the correctness of data. There are two distinct tasks here: the first 
has to do with validating the data that has been acquired, and the 
second has to do with validating the ML model that has been 
learned from the data. The varied nature of data, ranging from 
images, video, audio and logs and the presence of noise and other 
artefacts must be handled prior to learning as part of data vali
dation. The second task of model validation must be done to 
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ensure that the obtained models agree with the data that has been 
observed so far. The degree to which stakeholders trust the ML 
model is tied to the second task. 

4. Modelling and simulation for decision support in livestock 
farming 

Decision management is becoming increasingly important in today’s 
livestock farming, and decision support systems play a vital role in 
management and making the right decision at the right moment. DSS 
integrate optimization, modeling and simulation in a computer-based 
environment, in order to provide the required level of insight in the 
decisional problem. An important step in the development of effective 
real-world DSS is to formalize the decisional problem into a model 
(modelling phase) and then to simulate possible scenarios in order to 
evaluate their performance, to screen alternatives and finally focus only 
on the promising ones. Therefore, simulation refers to imitating the 
operations and processes of a system in the real world; while modeling is 
the process of understanding and describing the behavior of a system 
(Banks et al., 2010). 

To assist farm managers in their decision processes, M&S delivers 
valuable insights on the potential impact of various decisions farmers 
make before actually implementing them in the real-world. Obviously, 
this contributes towards a large reduction in costs, risks, and unnec
essary human efforts. The downside of M&S is that it is a very expensive 
and resource-consuming process, both in terms of human effort to build 
models, but also in terms of computation time (Banks et al., 2010). 
Therefore, M&S is not an approach that is easily accessible to small 
farms, and it is more of a luxury that only large farms or cooperation of 
farms can afford. Finally, the validation processes for the built simula
tion models can be very challenging, depending on the complexity of the 
system. Most of the studies concerning M&S approaches in PLF, are 
process-oriented simulation methods. On a farm, various objects or 
subroutines represent processes. Some examples of major processes in a 
farm are: feed availability, the herd, manure handling, and gas emis
sions. In this section, we first describe different M&S paradigms, and we 
describe the use of the processes in M&S more in detail. We then cate
gorize the studies on M&S in PLF with respect to the different M&S 
paradigms. 

4.1. Modelling and simulation paradigms 

Traditional M&S Paradigms: Simulation modeling is a process that 
generally involves converting expert knowledge into dynamic models 
and simulating them to understand more about the system. This tradi
tional simulation modeling has the advantage that a modeler can use 
existing knowledge to create meaningful simulation models represent
ing the system. These handcrafted models are also useful for testing 
theories about how a system works. If a model faithfully represents a 
system, then it will produce the same behavior as the real system. In this 
scenario the model can be thought of as a hypothesis for how the real 
system works. The most popular simulation paradigms are: discrete- 
event simulation, continuous simulation (also known as system dy
namics) and agent-based simulation. As illustrated in Fig. 2, at the 
bottom are the physical-level approaches that use highly-detailed rep
resentations of real-world objects. The models at the top are highly 
abstract, and they typically use aggregates such as consumer pop
ulations rather than individual objects (Grigoryev, 2012). Other models 
have an intermediate abstraction level. We elaborate more on these 
simulation paradigms in the following. 

Discrete-Event Simulation: A discrete-event simulation (DES) models 
the operation of a system as a (discrete) sequence of events in time. Each 
event occurs at a particular instant in time and marks a change of state in 
the system (Robinson, 2004). Traditionally, DES models are based on 
data extracted from a physically existing system or a system that has 
been developed and tested before (i.e. historical data). This data can be 
enhanced with a set of experimental rules and mathematical algorithms 
to enable prediction of system behaviors well in advance. To improve 
animal health and welfare, modeling the spread of disease in a large 
farm can help to simulate the disease behavior and make the best de
cision to prevent it from spreading more. Considering finite number of 
infectious stages (i.e. Susceptible, Intermittent and Persistent), transit
ing from one stage to another with a given rate, is an event which makes 
changes to the herd system (Bruijnis et al., 2010; Sørensen et al., 2017). 
DES approaches have not been used up to this moment for GHG emission 
estimation. Nevertheless, DES approaches for simulation of animal dis
eases could be used in combination with the Life Cycle Assessment (LCA) 
methodology to quantify the impact of the disease on GHG emissions 
(Mostert et al., 2018). 

Continuous Simulation: Continuous simulation (CS), also known as 

Fig. 2. Different simulation paradigms.  
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System Dynamics, is a methodology to recognize and solve problems by 
analyzing the information feedback, dealing with the dynamic structure 
and feedback mechanism between the qualitative and quantitative fac
tors of the complex procedure, to obtain the overall cognition and 
problem solving of the system (Bayer, 2004). In the CS methodology, a 
problem or a system (e.g., ecosystem, farming system or mechanical 
system) may be represented as a causal loop diagram (Bayer, 2004). 
Causal loop diagrams aid in visualizing a system’s structure and 
behavior, and analyzing the system qualitatively (Fig. 3). To perform a 
more detailed quantitative analysis, a causal loop diagram is trans
formed to a stock and flow diagram. A stock is the term for any entity 
that accumulates or depletes over time (i.e. milk production, feed intake, 
manure production or GHG emission). A flow is the rate of change in a 
stock, in terms of formulas or equations with stocks as the variables in 
the formula. Depending on the problem at hand, modeling the equations 
can be done in continuous or discrete time. 

In Rotz et al. (2011) the major components or processes of the model 
include available feeds, animal intake and manure production, and 
manure handling. The feeds available and their nutrient contents are 
provided through user input. Balanced rations are prepared for each 
animal group on the farm and their feed intake is determined to meet 
their energy and protein requirements. Based upon feed intake, growth 
and milk production, the nutrient output in manure is predicted. From 
this nutrient excretion, emissions are predicted as a function of weather 
conditions and management practices. Regarding animal welfare, stocks 
in CS can be defined as bacteria concentration which are transported via 
surface water or air (Widgren et al., 2019). Other studies of use of CS in 
modelling the dynamics of GHG emissions or animal welfare can be 
found in Table 3. 

Agent-Based Modeling: Agent-based modeling (ABM) is commonly 
used to study the dynamic movement behaviors of various types of 
systems, such as flocks of birds, pools of fish, pedestrian crowds, road 
traffic and livestock. A system can be simulated using a mobile agent- 
based model if it contains many similar agents, such as people who 
move around in a shared environment, act autonomously, and only have 
local knowledge (and possibly global knowledge about the environment: 
like a familiar building’s layout). On a dairy herd, agents can be defined 
as individual cows. Al-Mamun and Grohn (2017) developed a multiscale 
agent based simulation model of a dairy herd. In their model each cow 
was tracked from birth to death, residing at different management op
erations: adult/milking, calf and heifer. Their model was successfully 
applied to estimate critical parameters (i.e. insemination time) for 
management decisions. 

Data-Driven M&S: Data-Driven Simulation (DDS) is an approach 
where the simulation models are parameterized by data, allowing users 
to create and run a simulation model without the need to do explicit 
modelling. The goal of DDS is to generate simulation models directly 
from external data sources using data structuring and analysis algo
rithms for creating and configuring the model. The degree of parame
terization within data-driven simulation in research varies, affecting the 
flexibility of scenarios which can be modelled. Some DDS approaches 

use data only to estimate the model parameters (Al-Mamun et al., 2018), 
but other studies also drive the model structure from observational data 
(Widgren et al., 2019). Dynamic Data-Driven Simulation (DDDS) is a 
type of data-driven simulation which uses real-time data to detect the 
system model and feeds the simulation results back into the model 
continuously to gain more accurate and on time results. 

4.2. Overview of modelling and simulation approaches pertaining to 
livestock farming goals 

M&S approaches in livestock are applied to either improve animal 
health, productivity/profit and welfare, or reduce GHG emissions. IPCC- 
based M&S approaches are mostly process-based, and are primarily 
developed by scientists to better understand the relevant processes and 
predict how they interact. Some CS models in livestock farming consider 
manure management processes in their modules (Holzworth et al., 
2014), whereas other models consider processes for enteric fermenta
tion (Bannink et al., 2010), and some processes consider more than that 
(Schils et al., 2007), which is the main difference between CS ap
proaches. The addition of new processes to an existing model structure, 
requires much time and effort to develop or to adapt, and that is a 
weakness compared to the simpler and more flexible DS models of 
Table 1. Table 3 illustrates M&S studies of livestock farming according 
to the PLF goals of interest: animal health/welfare, and estimation/ 
mitigation of GHG emissions, and the three simulation paradigms: DES, 
CS and ABM. These M&S examples do not address the farmer directly 
but rather the farmer’s consultant for provision of advice. However, 
livestock farmer’s input is needed in this respect. 

We observe that most of the M&S research in livestock is process- 
based, typically categorized as continuous simulation. The reason is 
that there are variables for which a continuous description is more 
natural, e.g., GHG emissions, feed intake, milk production, temperature, 
concentration of bacteria in an infectious environment. For these vari
ables, discrete counting would clearly not be feasible. Data-driven and 
dynamic data-driven simulation approaches have received much less 
attention since data availability has been a challenge in livestock sector. 
Furthermore, considerable additional efforts are needed for both tran
sition sensor technology and the models that exploit sensor readings into 
decision support systems (Tomic et al., 2015), as elaborated in Section 6. 
We anticipate an increase in studies in these fields since animal and 
transition sensors are being used and developed more widely. 

5. Optimization in precision livestock farming 

Advanced technologies in PLF are utilized to optimize the contri
bution of each animal towards predefined goals. Goals, such as profit 
maximization and GHG emission reduction are driving factors behind 
any ethical farming practice. Casting these goals as an optimization 
problem is natural and widely accepted. Methods focused on animal 
welfare are more concentrated on optimal feed formulation and diet 
strategies (Babić and Perić, 2011; Moraes and Fadel, 2013). These 
models are often formulated as multi-objective problems. 

Other main issues that have been addressed by various optimization 
algorithms include: optimal design of animal housing to ensure good 
ventilation for animals while trying to reduce aerodynamic drag, opti
mization of transportation structures (Gilkeson et al., 2013), energy 
consumption optimization (Awan et al., 2019) and reproductive per
formance optimization (Herskin et al., 2018). Optimizing feed formu
lation has also gained more attention in the literature, because of its 
effects, mainly, on farm costs and feed production and with significant 
environmental impact on GHG emissions from enteric fermentation and 
manure management. Namely, GHG emissions from enteric fermenta
tion, as one of its main sources, represent 39 percent of total emissions 
from livestock (FAO, 2020). 

Fig. 3. Example of causal loop diagrams for the interrelationships between 
cattle population and air temperature (Van Nguyen and Nguyen, 2013). 
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5.1. Simulation-based optimization 

M&S combined with optimization can be a powerful decision support 
approach (Ólafsson and Kim, 2002). The potential solutions, subjected 
to the objective function, and the constraints of the optimization prob
lem, are evaluated solely via simulations. The advantages of adopting 
simulation-based optimization include ability to solve optimization 
problems without being affected to a large extent by the complexity of 
the system and the power to change the objective function and con
straints dynamically as the system changes (Azadivar, 1999; Hüllen 
et al., 2020). 

In the domain of livestock farming, we discovered use of optimiza
tion approaches, both in combination with M&S and without, which is 
summarized in Table 4. 

Welfare: There are a few works that combine optimization and 
simulation for ensuring the health and welfare of livestock. They include 
the works of Bajardi et al. (2012) and Michalak (2019), which deal with 
epidemic control in livestock farms. Bajardi et al. (2012) performed 
spatial simulations of cattle movements to detect epidemic spreading 
paths. Although sustainable feed formulation is the main goal of some 
studies, the nutritional welfare of pigs and broilers is also considered 
(Alqaisi et al., 2017; Garcia-Launay et al., 2018; Morel and Hill, 2011; 
Uyeh et al., 2018). Providing adequate ventilation is necessary to ensure 
the welfare of livestock. In the absence of proper ventilation, dust con
centrations inside the shelter increase and cause health issues to the 
animals. Ecim-Djuric and Topisirovic (2010) provided a study into 
optimal design of ventilation in livestock shelters and Fawaz et al. 
(2014) considered a simulation based optimization of heat and 

ventilation within chicken shelters. Diez-Olivan et al. (2019) proposed a 
data-driven modelling process performed by a quantile regression for
ests approach that allows estimating growth, welfare and mortality 
parameters on the basis of environmental deviations from optimal farm 
conditions. 

Production, Costs and Sustainability: The work of Halachmi (2015) 
provided a simulation-based optimization of fish farms with the aim of 
maximizing production. Their model incorporated fish growing phases, 
with discrete-event and continuous-time variables and ideas from 
queuing theory. Zhang et al. (2016) studied prediction of milk produc
tion of dairy farms in Ireland by combining simulation of herd and milk 
production, while optimizing the production quantities. 

Optimizing the costs associated with livestock farming is also 
important from a sustainability viewpoint. A study into the most effec
tive routes from milk transportation was done by Caria et al. (2018). The 
problem that was studied falls under the category of profit maximiza
tion, where profit is maximized by minimizing the cost of milk collec
tion. Their solution to this problem, which is a case of the Travelling 
Salesman Problem (TSP), consisted of the Ant Colony Optimization 
(ACO) algorithm. Similarly, Zhang et al. (2020) proposed a genetic al
gorithm based optimization of sheep transportation paths. Some re
searchers use optimized feed formulations for diet optimization as 
another way of reducing the costs associated with livestock farms 
(Alqaisi et al., 2017; Garcia-Launay et al., 2018; Morel and Hill, 2011; 
Uyeh et al., 2018). Energy consumption within farms is also another 
aspect that contributes to the costs of maintaining such farms. In fact, 
good design of livestock shelters which permit good ventilation reduces 
the need for using artificial ventilation and thus improves energy 

Table 3 
M&S approaches regarding different simulation paradigms and PLF goals.  

Goal M&S 
type 

Literature Description 

welfare DES (Bruijnis et al., 2010) Use dynamic stochastic Monte Carlo simulation model to assess the effect of disease on income. 
(Sørensen et al., 2017) Use dynamic mechanistic Monte Carlo simulation model for disease in pigs using R software. 

CS (Kahn and Lehrer, 1984) Reproductive performance of beef cows. 
(Conrad, 2004) For cattle and crop production. 
(Bannink et al., 2008) Use mechanistic simulation model on rumen fermentation. 
(Guimarães et al., 2009) For goats. 
(Parsons et al., 2011) APSIM and System dynamic. 
(Tedeschi et al., 2011) Applied for small ruminants. 
(Widgren et al., 2016) SimInf: R package. 
(Widgren et al., 2019) SimInf extended: to support data-driven spatio-temporal simulations of disease transmission in wildlife. 

ABM (Pomar et al., 2011)  
(Al-Mamun and Grohn, 2017) MABSDairy: a multiscale agent based simulation of a dairy herd. 
(Al-Mamun et al., 2018) Data-driven (only parameters) individual-based model of infectious disease. 

GHG 
reduction 

DES (Mostert et al., 2018) The impact of foot lesions in dairy cows on GHG emissions of milk production: Using LCA method and mechanistic 
simulation model (developed in R). 

CS (Berntsen et al., 2003) FASSET: Process simulation used to evaluate consequences of changes in regulations, management, prices and 
subsidies on farm production, profitability, nitrogen losses, energy consumption and GHG emission. 

(Holzworth et al., 2014; Keating 
et al., 2003) 

APSIM: Applications, including support for on-farm decision making, development of waste management 
guidelines. 

(Schils et al., 2007) DairyWise: Combines already existing simulation models of specific subsystems into a whole farm model for use in 
interdisciplinary studies.   

(Johnson et al., 2008) DairyMod and EcoMod: Biophysical process simulation of the dairy pasture system. 
(Bannink et al., 2010) A dynamic, mechanistic model of enteric fermentation in dairy cows based on the model of (Mills et al., 2001). 
(Little et al., 2010) Holos: Process-based emission factors estimate all important direct and indirect sources of GHG emissions of 

livestock operations. 
(Del Prado et al., 2011) SIMS(Dairy): Process simulation of the effects of management, climate and soil properties on nitrogen, phosphorus, 

and carbon losses along with profitability, biodiversity, soil quality, and animal welfare. 
(Rotz et al., 2011) DairyGEM: a software tool for whole farm assessment of emission mitigation strategies from manure. 
(Chardon et al., 2012) MELODIE: Dynamic simulation of the flows of carbon, nitrogen, phosphorus, copper, zinc and water within animal, 

pasture, crop and manure components. 
(Li et al., 2012) Manure-DNDC: A biogeochemical process model for quantifying greenhouse gas and ammonia emissions from 

livestock manure systems. 
(Rotz, 2012) IFSM: Process simulation of all important farm components representing the performance, economics, and 

environmental impacts including direct and indirect GHG emissions and carbon footprint. 
(EU AnimalChange, 2015) FarmAC: Process-related emission factors represent carbon and nitrogen flows on arable and livestock farms 

quantifying GHG, soil C sequestration, and N losses to the environment. 
ABM,CS (Matthews and Bakam, 2007) A combined agent-based and biophysical modelling approach to address GHG mitigation policy issues  
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efficiency. Ecim-Djuric and Topisirovic (2010) provide a simulation 
based study into finding optimal ventilation in livestock shelters. Soufi 
et al. (2013) provided a simulation-based optimization study into the 
energy consumption in livestock farms. A similar study by Fawaz et al. 
(2014) provided a simulation-based optimization of heat and ventilation 
in chicken shelters. Mančić et al. (2016) proposed a simulation-based 
study involving the optimization of configurations of an energy system 
in order to meet the energy demands of a pig farm. Identifying and 
controlling epidemic spread among livestock is another area which in
fluences the cost. Bajardi et al. (2012) and Michalak (2019) provided 
simulation based optimization of epidemic spread. 

GHG emissions’ estimation and mitigation has been mostly achieved 
as an indirect consequence of the optimization goals in the majority of 
the studies in the scientific literature. By optimizing costs of milk or in 
fact any kind of animal product transportation, the energy consumption 
and emissions can be reduced significantly (Caria et al., 2018; Chokanat 
et al., 2019; Pretty et al., 2005; Sethanan and Pitakaso, 2016; Zhang 
et al., 2020). Another area that impacts the sustainability of a livestock 
farm is the feed formulation. In fact, formulating feeds of the livestock 
by including agricultural by-products would lead to reduced GHG 
emissions (Alqaisi et al., 2017; Guo and Zhang, 2020; Sihananto et al., 
2019; Wijayaningrum et al., 2017). Uyeh et al. (2018) used a differential 
evolution algorithm combined with feed formulation simulations to find 
the optimal feed formulation for cattle farms. Unlike aspects such as 
transportation in the context of a livestock farm, feed formulation is 
animal specific. Each type of animal requires special feed formulations. 
Pig farms can be large source of methane emissions if their feed 

formulations do not match their growth requirements. In this context, 
Morel and Hill (2011) performed a simulation based study to optimize 
feed formulations. The consequences of optimal feed formulations 
include reduction in nitrous oxide and methane emissions, which in turn 
imply reduced GHG emissions. The work of Garcia-Launay et al. (2018) 
considered a multi-objective optimization of feed formulation consisting 
of sustainability and cost factors. Optimizing the energy consumption of 
livestock farms also contribute to lowering of GHG emissions (Mančić 
et al., 2016). A study made by Paul et al. (2020) performed simulation- 
based optimization of GHG emissions and other sustainability factors 
while increasing the annual farm income. Similarly, López-Andrés et al. 
(2018) provided a combination of process simulation, Monte-Carlo 
simulation and artificial intelligence techniques to maximize profits 
while minimizing environmental impacts. 

Single-farm vs. multi-farm studies: It is interesting to see how much 
research has been done on individual farms alone and on multiple farms 
because the scale of the study determines how well the models gener
alize. Most of the works discussed above were single farm studies. The 
works of Bajardi et al. (2012) and Zhang et al. (2016) were multi-farm 
studies. The milk transportation route optimization solution of Caria 
et al. (2018) involves multiple farms (milk suppliers) of a particular 
region. Their ideas can be extended to other regions and even different 
kinds of farms. The work of Caria et al. (2018) uses an ACO algorithm to 
solve their particular milk transportation problem by incorporating 
problem-specific parameters such as number of suppliers, total milk 
produced per day, distance between farm and cheese factory etc. Their 
idea of finding the optimal routes using ACO can be adapted to other 

Table 4 
Previous research in simulation-based optimization for livestock farming.  

General reference Optimization objective Optimization model Farm type 

(Lopes et al., 2016) Reproductive performance optimization: survey  Cattle 
(Babić and Perić, 2011) Formulating optimal feed blend multi-criteria based goal programming model pigs 
(Moraes and Fadel, 2013) Diet optimization linear, dynamic and stochastic programming  
(Gilkeson et al., 2013) Designing optimal trailers for transporting livestock Computational Fluid Dynamics (CFD) based optimization  
(Singh and Saxena, 2015) Diet optimization Linear programming and self-organizing migrating genetic 

algorithm (SOMGA) 
Dairy cattle 

(Awan et al., 2019) Optimizing the energy consumption in wireless sensor 
networks 

Grey Wolf Optimization (GWO) algorithm  

(Xu et al., 2016) Optimal feed formulation Particle Swarm Optimization (PSO) algorithm Poultry 
(Wijayaningrum et al., 

2017) 
Optimal feed formulation Hybrid adaptive genetic algorithm and simulated annealing Poultry 

(Nasseri and Darvishi, 
2018) 

Optimal feed formulation Fuzzy linear programming Dairy cattle 

(Diez-Olivan et al., 2019) Growth, welfare and mortality parameters quantile regression forests broiler meat 
chickens  

Simulation-based 
reference 

Optimization objective Constraints Farm type Simulation done with respect to: 

(Morel and Hill, 2011) Profit and GHG emissions Feeding cost Pigs Growth 
(Ecim-Djuric and 

Topisirovic, 2010) 
Ventilation (energy) Wind velocity and direction Pigs Ventilation and fluid dynamics 

(Bajardi et al., 2012) Reduction in epidemic spread Animal movements Cattle Bovine movements 
(Soufi et al., 2013) Energy Livestock shelter parameters Cattle Stand-alone photovoltaic systems for 

livestock shelters 
(Fawaz et al., 2014) Temperature and air quality CO2, NH3 concentrations Chicken Thermal flow, CO2, NH3 

concentrations 
(Halachmi, 2015) Yearly turnover (production) Space/culture volumes Fish Fish growth phases 
(Mančić et al., 2016) Polygeneration system configuration Temperature, GHG emissions Pig Energy demand, polygeneration system 
(Zhang et al., 2016) Milk production forecast Climate, Physical aspects of cows Cattle Yield production model, herd 
(Alqaisi et al., 2017) Nutritional and economic feed 

formulation 
Feed requirements, Dietary nutrients Broiler Feed formulations for broiler life cycle 

(Garcia-Launay et al., 
2018) 

Feed formulation cost Nutritional, GHG emissions Pig, broiler, 
young bulls 

Life cycle assessment 

(Uyeh et al., 2018) Feed formulation cost Nutritional Cattle Feed formulations 
(López-Andrés et al., 2018) Environmental impact, profit, 

resources 
Production limits, raw materials and 
energy requirements 

Chicken Raw material, energy requirements 

(Michalak, 2019) Epidemic control Time, Control strategy parameters General livestock Livestock population 
(Zhang et al., 2020) Logistics cost, GHG emission, energy 

consumption 
Vehicle and sheep cost parameters Sheep Delivery path 

(Paul et al., 2020) Annual income, Annual farm balance, 
GHG emissions 

Farm size, Feed balance, organic matter 
balance 

Cattle Bio-economic model, FarmDESIGN 
based simulation  
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regions with different terrains and constraints by changing the param
eters of the optimization problem, and then using ACO to solve the new 
problem. The peculiarities of regions and farms can then be incorporated 
within the optimization problem in the form of parameters or 
constraints. 

5.2. Summary and challenges 

In summary, there are many works that try to optimize costs asso
ciated with livestock farms. This is because, costs can be easily formu
lated as an optimization objective. However, this is not the case with 
welfare because the overall health of livestock is harder to quantify. Yet, 
there are optimization studies for epidemic transmission paths and 
living conditions of livestock (Alqaisi et al., 2017; Bajardi et al., 2012; 
Ecim-Djuric and Topisirovic, 2010; Fawaz et al., 2014; Garcia-Launay 
et al., 2018; Michalak, 2019; Morel and Hill, 2011; Uyeh et al., 2018). 
Some of the open challenges in ensuring animal welfare include the 
following: 

• modelling risk associated with animal welfare such as muscle, skel
etal disorders and diseases, 

• development of welfare assessment models using multiple perspec
tives such as economic, food security and health, and  

• selection and validation of the best simulation model (Collins and 
Part, 2013). 

Sustainability of livestock farms is also another widely studied topic 
in the context of simulation-based optimization. It includes aspects such 
as optimizing energy consumption and reducing GHG emissions. This 
topic still has many open challenges, such as the following:  

• incorporation of a region/state/nation-wide study,  
• reducing emissions from the viewpoint of multiple farms, and  
• improving optimization through validation of models and data. 

6. Discussion 

Throughout the paper we discussed how different modelling tech
niques like M&S approaches in livestock are applied to either improve 
animal health, productivity/profit and welfare, or reduce GHG emis
sions. However, data coming from different sources, i.e., sensor data or 
farmer’s input and the models that exploit sensor readings into decision 
support systems are needed in this respect. In this section we delve more 
into the challenges regarding data pathway and the key takeaways. 

6.1. Data pathway and associated challenges 

Precision Livestock Farming deeply changes farmers working pro
cesses (Hostiou et al., 2017) by providing new information – often in 
large quantities – on the health status of the animals, their welfare, and 
their food requirements to preserve and improve the technical, eco
nomic and environmental performances of farms (Pannell, 1999). One of 
the central problems in the management of information for PLF is 
integration and interpretation of heterogeneous data coming from 
different equipment and data sources. Semantic annotation and pub
lishing of metadata is a common approach for discovering data across 
numerous heterogeneous sources, and it enables users to search in a 
standard and transparent way. To support the semantic annotation of 
metadata, standard vocabularies have been proposed such as the Data 
Catalog Vocabulary (DCAT) (Zeginis et al., 2019). 

Through PLF, valuable data is generated by modern farm equipment, 
such as automated milking and feeding systems, milking robots and 
parlors, feed mixers, concentrate feeders, animal health monitoring 
systems such as pedometers, active ear-tags or rumination collars, 
weather monitoring systems or specialized environment sensors, and not 
the least, farmers (Tomic et al., 2015). The initial filtering and 

processing of raw data helps to better understand the state of the (agri- 
food) system. Furthermore, by using advanced algorithms and moni
toring the performance of the system with respect to desired output, a 
system can become capable of taking appropriate decisions and per
forming independent localized actions. Therefore, a “smart” agri-food 
system would contain capabilities such as parameter sensing, decision 
making and output control (Misra et al., 2020). 

There are already commercial systems in use that can perform simple 
actions such as automatically start irrigation processes, open/close 
windows for temperature controlling, robotic milking or automatic 
feeding. The purpose of all these DSSs, in-line with the PLF approach, is 
not to replace the farmer but to facilitate the sustainable management of 
the farm (Wathes et al., 2008). The farmer’s perception of a potential 
solution will always play the major role in the decision-making process. 

Tomic et al. (2015) mention that mostly a 4-Level functional model 
(Fig. 4) has been used to integrate the measurement level (Level 1), 
where the individual parameters are assessed, e.g., activity measure
ment; the interpretation level (Level 2) , where sensor data is translated 
into status information, e.g., estrus; the integration level (Level 3), at 
which sensor information is to be integrated with other systems’ infor
mation to produce advice, e.g., whether to inseminate a cow or not; and 
the automation / the decision support level (Level 4) where farmers 
make decisions based on the system output or the system makes the 
decision autonomously, e.g., to call the inseminator. They also indicate 
that considerable additional efforts are needed for both transition sensor 
technology and the models that exploit sensor readings into decision 
support systems (Level 3 and Level 4 systems) that can be used on 
commercial farms. Moreover, Tomic et al. (2015) discuss about the in
formation overload for farmers, that makes them spend a lot of time in 
inserting, accessing and interpreting information, i.e., in interacting 
with their systems over many different interfaces. There is therefore a 
pressing need to automatically integrate available data within a decision 
support (Level 4) system that can then provide holistic advices to 
farmers leading to more efficient herd management (Tomic et al., 2015). 

As such, we argue for an integrated use of wireless sensor networks, 
data analytics and modelling that enable an efficient decision support 
system that can enable farmers to concentrate on their daily farm ac
tivities and use the data for their advantage. Fig. 5 illustrates our envi
sioned PLF platform, which is a hybrid approach that uses advanced data 
analytics and modelling and simulation. 

Specifically, IoT devices can be installed in the farm for monitoring 
key parameters of:  

- the stable environment (temperature, humidity, gas sensors (NOx, 
COx, CH4, NH3, etc.),  

- the animal (accelerometer, motion sensor, weight sensor, etc.), and  
- the feed (flow sensor, weight sensor, humidity sensor etc.). 

A cloud based platform could collect and analyze all the aforemen
tioned data for providing recommendations to the livestock farming 
stakeholders (farmers, consultants, etc.) in order to take management 
decisions for reducing GHG emissions. In addition, blockchain tech
nology can be used in the platform for developing different features such 
as data protection, data privacy, data sharing, traceability and smart 
contracts among the livestock farming stakeholders. Specifically, the 
smart contracts feature of the platform can help livestock farming 
stakeholders to have contracts with better prices due to decreased GHG 
emissions. 

There are several other schemes proposed in the literature tackling 
precision livestock farming. Arrowhead (Marcu et al., 2020) is an open 
source local cloud framework, which enables integration of real-time 
IoT protocols such as Message Queuing Telemetry Transport (MQTT) 
and local cloud edge processing used in agriculture. However, it is not 
targeted yet for livestock farming and lacks the blockchain component. 
Another proposal is a swine management system (Piñeiro et al., 2019) 
for improving GHG emissions that also lacks the blockchain component. 
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There are numerous companies offering either AI-based analytics or 
blockchain for livestock farming. Vence (2018) is offering Artificial In
telligence and Sensor based big data for controlling animal movement, 
monitor wellbeing and creating virtual fence lines during grazing. 
However it lacks both blockchain and GHG emission reduction compo
nents. BeefChain (2018) is a blockchain-based platform for enhancing 
traceability and enabling unique animal identification and ensuring 
origin in cattle farming, but it does not have GHG emission monitoring/ 
reduction capabilities. In summary, there are numerous proposed plat
forms as well as companies that provide such platforms, but none of 
them have this combination of GHG monitoring, blockchain and deci
sion support system based on data modelling and analytics. Our plat
form combines all three elements to provide farmers with a holistic view 
on the farm and animal status and enable efficient GHG-reducing 
management. 

Finally, a knowledge base in the platform through which ICT pro
cesses are shared by farmers can help them to:  

- decide about the various inter-related parameters that are required 
to have optimum use of environmental resources available (i.e. 
reduced GHG emissions),  

- share with experts, any interim or major problems that may crop up 
during the whole livestock farming process e.g. sowing of seed to 
delivering milk from cows, and  

- market products with reduced GHG to livestock farming 
stakeholders. 

There are several challenges that relate to data collection in this 
specific scenario as follows:  

- GHG estimation. As mentioned previously in Section 4, it is 
currently not possible to correctly measure GHG emission, rather 
estimate them as accurately as possible using the different Tiers of 
IPCC methodology. Therefore, the Tier used and the data available 
on the farm premises, as well as the extent of the measurements will 
have a significant impact on the design of the model within the cloud 
platform. This means that the different farm structures (e.g. cattle- 
only farms, mixed livestock farms) will require the implementation 
of different models (and with this the overhead in terms of resources 
needed to implement them). 

- Data sharing and interoperability. The key challenge of inte
grating different livestock agricultural systems is how to deal with 
the heterogeneity of multiple information resources. Therefore, one 
requirement includes an ontology-based approach to describe and 
extract the semantics of agriculture IoT objects and a mechanism and 
data model for sharing and reusing livestock agricultural specific 
knowledge. While for other disciplines ontologies have already been 
well established, for agriculture little efforts have been made espe
cially since ICT-enabled agricultural systems are not widespread.  

- Visualization for farming stakeholders. Many initiatives have 
been developed presently that boast user-friendly interfaces for non- 
IT skilled agriculture stakeholders. However, for an end-user it is 
highly important to not only have relevant data in an at-a-glance, 

Level 1: 
Measurement level

Level 2:
Interpretation level

Level 3:
Integration level

Level 4:
Automation/Decision support level

Fig. 4. A 4-level functional model.  

Fig. 5. Proposed Precision Livestock Farming platform.  
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easy to understand visual format, but also to be offered already 
insight and decision support based on data analytics. This is an end- 
goal of implementing the platform presented in Fig. 5. Future PLF 
systems should be highly adapted to the different way of processing/ 
analyzing data according to who is the end-user. For example, 
whether it is a farmer (where a more friendly and relatively punctual 
analysis is needed) or cooperative (where a more complex analysis 
should be offered) the system should adapt accordingly. 

6.2. Key takeaways 

Best practices to reduce livestock GHG emissions include improving 
feed quality and digestibility, improving animal health and welfare 
using PLF, and manure management, consisting of collection, storage 
and utilization (Reisinger and Andeweg, 2015). Besides, the goal of 
reduction in GHG emissions, increasing the productivity or profit of 
livestock farms is also an important goal of PLF, which is associated with 
ensuring the welfare of animals. Data with respect to animal welfare has 
been collected by many studies in the past. It includes data related to 
animal feed formulation, animal activity, sounds, product monitoring 
etc. Simulation-based optimization has offered a great help in improving 
feed quality. We also discussed about the applications of ML and other 
data analytics approaches in improving animal health and welfare. 
Manure management is mostly modeled by continuous simulation and 
as a process interacting with other processes involved in a farm. 

Technologies to reduce GHG emissions usually result in low- 
intensive animal products and that will not necessarily translate into 
lower total emissions (Reisinger and Andeweg, 2015). The first step to 
mitigate GHG emission from livestock, is to estimate it under different 
managerial scenarios. Here, M&S offers holistic techniques to estimate 
emission intensity of animal products, or the total emission from a farm. 
Input data volume, indicates the methodology and the precision of our 
estimates to successfully capture the distinction between different sce
narios. ML has been successfully applied to animal welfare and pro
ductivity/profit related tasks, which provides a promising starting point 
for an advanced monitoring and diagnostic system that integrates the 
best ML models and M&S to exploit the varied amounts of heterogenous 
data that are collected for the purpose of achieving PLF goals. 

Throughout the study, we were able to spot a number of patterns and 
form conclusions that we present as follows. We noticed that for the goal 
of improving animal health and welfare, when low resolution informa
tion, or small amount of data is available, most of the approaches 
resorted to classical statistical and M&S methods, whereas the large 
amounts of data lead to the use of more advanced and sophisticated 
methods, such as data-driven M&S and ML (Table 5). 

On the other hand, existing IPCC guidelines help in estimating GHG 
emission as a part of a mitigation goal. However, methods to deal with 
GHG emission lack the optimization part and they merely try to estimate 
emissions under different circumstances and from different sources. 
Whereas, optimization approaches are applied mostly for animal health 
and welfare (feed formulation especially), to increase the efficiency and 
productivity of the system (i.e. early disease detection, best insemina
tion time). Table 5 indicates four broad categories of methodologies one 
can apply, depending on the amount of available data and the goal of the 
research. 

7. Conclusions 

Livestock Farming is a complex and dynamic problem that involves a 
high degree of uncertainty. It is apparent that 

decisions in the way livestock farming is performed can have far- 
reaching effects, especially on the environment and the natural re
sources. In light on the complexity of the livestock farming, the preva
lence and ease of collecting data through the new and emerging 
technologies provides an opportunity to ease the decision making pro
cesses that occur daily. We have provided an overview of the need and 

use of data-driven decision support for the main goals of Precision 
Livestock Farming. Based on literature, we have identified the main 
goals as enhancement of animal health and welfare, and reduction of 
GHG emissions. The latter goal is especially gaining in importance due 
to the climate change, and there are repeated calls for reducing the 
environmental footprint of livestock production. Nowadays, with the 
availability of advanced sensing technologies, data has become more 
available, and this is also slowly changing the way in which traditional 
simulation is performed, yielding new and more data-driven ap
proaches. We scoped the existing approaches and categorized them into 
machine learning and data analytics (more black box model based), and 
modeling and simulation (more white box model-based) to provide an 
exhaustive overview and a tool of deciding on a suitable approach with 
respect to a given problem. We, furthermore, discussed the challenges 
associated with the data collection processes, and a possible solution. By 
integrating the fields of IoT, big data, and AI, PLF opens doors for more 
advanced and sophisticated approaches and fully transforms the tradi
tional livestock farming processes, especially when combined with M&S 
and advanced data analytics approaches. It could prove to be an 
important piece of the puzzle yielded by the challenges associated with 
the climate changes and sustainable food production. 
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Piñeiro, C., Morales, J., Rodríguez, M., Aparicio, M., Manzanilla, E.G., Koketsu, Y., 2019. 
Big (pig) data and the internet of the swine things: a new paradigm in the industry. 
Animal frontiers 9, 6–15. 
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